Substituent Effects on Cyclopropylcarbinyl Solvolysis Rates. Evidence for Symmetrical Transition States

Sir:
The renowned conjugative interaction of cyclopropane rings with adjacent carbonium ions ${ }^{1}$ continues to be demonstrated impressively. Cyclopropylcarbonium ions are unusually stable. ${ }^{1-3}$ Cyclopropylcarbinyl derivatives solvolyze with markedly enhanced rates ${ }^{1,4-10}$ to give rearranged and position scrambled products of the allylcarbinyl, cyclobutyl, and cyclopropylcarbinyl types. ${ }^{1-14}$ There must be extensive charge delocalization from the carbinyl carbon of the cyclopropyl carbonium ion to the cyclopropane ring, but the nature and the extent of this delocalization is still not generally agreed upon.

Many structures for the cyclopropylcarbonium ion have been considered. ${ }^{1-3,12,15-17}$ The classical representation, $I,{ }^{1 \mathrm{~b}}$ implies to us localization of the charge to the 1 ' position in a manner similar to that in the isobutyl or in the cyclohexylcarbinyl cation. We regard I as unsatisfactory in view of the abundant evidence for conjugation; some kind of "dotted line" formulation appears to us preferable. In certain cases the homoallylic cation, II, with charge distributed between $\mathrm{C}-\mathrm{l}^{\prime}$ and C-2, may be favored, ${ }^{15.16}$ but this structure seems unlikely for simple cyclopropylcarbinyl systems. ${ }^{1,15-17}$
(1) Reviews: (a) R. Breslow in "Molecular Rearrangements," Vol. 1, P. de Mayo, Ed., Interscience Publishers, Inc., 1963, Chapter 4; (b) N. C. Deno, Chem. Eng. News, 42 (40), 88 (1964); Progr. Phys. Org. Chem., 2, 129 (1964); (c) M. J. S. Dewar and A. P. Marchand, Ann. Rev. Phys. Chem., 16, 321 (1965), and references therein cited.
(2) C. U. Pittman, Jr., and G. A. Olah, J. Am. Chem. Soc., 87, 2998, 5123 (1965).
(3) N. C. Deno, J. S. Liu, J. O. Turner, D. N. Lincoln, and R. E. Fruit, Jr., 87, ibid., 3000 (1965); N. C. Deno, H. G. Richey, Jr., J. S. Kiu, D. N. Lincoln, and J. O. Turner, 87, ibid., 4533 (1965).
(4) (a) K. B. Wiberg and A. J. Ashe, III, Tetrahedron Letters No. 21, 1553 (1965); (b) ibid., No. 47, 4245 (1965); (c) K. B. Wiberg, G. M. Lampman, R. P. Ciula, D. S. Connor, P. Schertler, and J. Lavanish, Tetrahedron, 21, 2749 (1965).
(5) (a) D. D. Roberts, J. Org. Chem., 29, 294 (1964); (b) ibid., 30, 23 (1965).
(6) (a) S. Bor čič, M. Nikoletić, and D. E. Sunko, J. Am. Chem. Soc., 84, 1615 (1962); (b) M. Nikoletić, S. Borčić, and D. E. Sunko, Proc. Natl. Acad. Sci. U. S., 52, 893 (1964).
(7) W. D. Closson and G. T. Kwiatkowski, Tetrahedron, 21, 2779 (1965).
(8) E. F. Cox, M. C. Caserio, M. S. Silver, and J. D. Roberts, J. Am. Chem. Soc., 83, 2719 (1961).
(9) (a) R. A. Sneen, K. M. Lewandowski, I. A. I. Taha, and B. R. Smith, ibid., 83, 4843 (1961); R. A. Sneen and A. L. Baron, ibid., 83, 614 (1961); (b) R. Breslow, J. Lockart, and A. Small, ibid., 84, 2793 (1962).
(10) H. Hart and J. M. Sandri, ibid., 81, 320 (1959); H. Hart and P. A. Law, ibid., 84, 2462 (1962); 86, 1957 (1964).
(11) F. T. Bond and L. Scerbo, Tetrahedron Letters, No. 48, 4255 (1965).
(12) (a) J. D. Roberts and R. H. Mazur, J. Am. Chem. Soc., 73, 2509, 3542 (1951); R. H. Mazur, W. N. White, D. A. Semenow, C. C. Lee, M. S. Silver, and J. D. Roberts, ibid., 81, 4390 (1959); M. C. Caserio, W. H. Graham, and J. D. Roberts, Tetrahedron, 11, 171 (1960); E. Renk and J. D. Roberts, J. Am. Chem. Soc., 83, 878 (1961); M. S. Silver, M. C. Caserio, H. E. Rice, and J. D. Roberts, ibid., 83, 3671 (1961); K. L. Servis and J. D. Roberts, ibid., 86, 3773 (1964); (b) ibid., 87, 1331 (1965).
(13) M. Hanack and K. Görler, Chem. Ber., 96, 2121 (1963); M. Hanack and H. J. Schneider, Tetrahedron, 20, 1863 (1964).
(14) C. F. Wilcox, Jr., and M. E. Mesirov, J. Am. Chem. Soc., 84, 2757 (1962); C. F. Wilcox, Jr., and D. L. Nealy, J. Org. Chem., 28, 3450, 3454 (1963); J. B. Rogan, ibid., 27, 3910 (1962); R. S. Bly and R. T. Swindell, ibid., 30, 10 (1965); D. E. Applequist and J. A. Landgrebe, J. Am. Chem. Soc., 86, 1543 (1964).
(15) M. Simonetta and S. Winstein, ibid., 76, 18 (1954); S. Winstein and E. M. Kosower, ibid., 81, 4399 (1959); R. L. Piccolini and S. Winstein, Tetrahedron Suppl., 2, 423 (1963).
(16) M. E. H. Howden and J. D. Roberts, ibid., 2, 403 (1963).
(17) R. Hoffmann, J. Chem. Phys., 40, 2480 (1964); Tetrahedron Letters, No, 43, 3819 (1965).

The "tricyclobutonium ion", ${ }^{12}$ with $\mathrm{C}_{3 \mathrm{v}}$ symmetry and essentially no charge on the methine group (C-1) (III), has received neither experimental ${ }^{12}$ nor theoretical ${ }^{15-17}$ support.

Two different structures are favored by two schools of investigators: the unsymmetrical "bicyclobutonium ion" (IV-V), $6,8,12,17$ and a symmetrical "bisected" form (VI-IX). ${ }^{2,3,17}$ These two structures have different charge distribution. All four carbons bear charge in VI-IX, but IV and V predicts instantaneous delocalization only onto $\mathrm{C}-1^{\prime}, \mathrm{C}-1$, and $\mathrm{C}-2$, but not onto C-3. In support of VI-IX analogies with cyclopropanecarboxaldehyde ${ }^{17,18 a}$ cyclopropyl methyl ketone, ${ }^{18 \mathrm{~b}}$ cyclopropanecarboxylic acid chloride, ${ }^{18 \mathrm{~b}}$ and phenylcyclopropane ${ }^{19}$ are cited. ${ }^{1 c, 2,3,17}$ These molecules prefer bisected conformations (like IX) which, presumably, permit maximum overlap of the p orbital of the carbon adjacent to the ring with the cyclopropane "bent bonds." ${ }_{1}$

We report here the simple approach to this problem of using methyl groups as probes for charge delocalization in the transition states of cyclopropylcarbinyl solvolyses (Table I). The rate enhancements produced by substitution of a single methyl group in various positions is summarized in XVIII. The effect of a second methyl group is shown in XIX and XX. The

XVIII

xx

[^0]Table I. First-Order Rate Data for Solvolysis of Cyclopropylcarbinyl 3,5-Dinitrobenzoates in 60% Aqueous Acetone at 100°

Cyclopropylcarbinyl		Relative rates			
	3,5-dinitrobenzoate	k_{1}, sec^{-1}	Obsd	Calcd ${ }^{\text {a }}$	Lit.
1	Parent	4.30×10^{-7}	1.0	1.0	1.0
2	1-Methyl	2.13×10^{-6}	5.0		$4.7{ }^{\text {b }, ~ c 4.8, ~}{ }^{d} 5.5,{ }^{e} 50^{f}$
3	1'-Methyl	4.37×10^{-4}	1020		
4	trans-2-Methyl	4.75×10^{-6}	11.0	(11.0)	
5	cis-2-Methyl	3.50×10^{-6}	8.2	(8.2)	
6	2,2-Dimethyl	3.97×10^{-5}	92	90	96^{6}
7	trans,tran.-2,3-Dimethyl	5.33×10^{-5}	124	121	
8	cis,cis-2,3-Dimethyl	3.53×10^{-5}	82	67	
9	cis,trans-2,3-Dimethyl	3.45×10^{-5}	80	90	
10	trans-2,3,3-Trimethyl	2.12×10^{-4}	490	1000	
11	2,2,3,3-Tetramethyl	6.75×10^{-4}	1570	8100	
12	trans-2-Ethoxy	4.03×10^{-4}	940		
Polycyclic Compounds					
13	$\mathrm{X}, n=8$	3.77×10^{-5}	88		
14	$\mathrm{X}, n=7$	2.20×10^{-5}	51		
15	$\mathrm{X}, n=6$	9.65×10^{-5}	220		
16	$\mathrm{X}, n=5$	1.70×10^{-5}	40		36°
17	XI	3.78×10^{-6}	8.8		
18	$\mathrm{X}, n=4$...		$1.3{ }^{h}$
19	XII	4.00×10^{-4}	930		
20	XIII	5.42×10^{-4}	1260		
21	XIV	6.00×10^{-6}	14		
22	XV	4.43×10^{-5}	103		
23	XVI-PNB ${ }^{7}$	2.17×10^{-67}			$300{ }^{\circ}$
24	XVII-PNB				1000°

${ }^{a}$ Calcd by eq 1. ${ }^{\circ}$ Methanesulfonates in 96% ethanol at $20^{\circ} .{ }^{6 b}{ }^{c}$ Tosylates in acetic acid at $25^{\circ} .5 \mathrm{~s} \quad{ }^{d} p$-Methoxybenzenesulfonates in acetic acid at $25^{\circ} .5 a \quad$ Benzenesulfonates in acetic acid at $25^{\circ} .{ }^{5 a} \quad$ Chlorides in 50% ethanol. Rough comparison; rate constants were not reported at the same temperature. This ratio seems suspect. ${ }^{\circ}$ Tosylates in acetic acid with added KOAc at 25°. ${ }^{4 a}$ Comparison made with data for the parent compound in acetic acid alone..$^{5 \beta}{ }^{h}$ Tosylates in acetic acid at $17^{\circ} .4 \mathrm{~b} \quad$ i Comparison assuming p-nitrobenzoates solvolyze six times slower than 3,5-dinitrobenzoates. ${ }^{i} p$-Nitrobenzoates in 90% acetone at $118.6^{\circ} .40$

2- and 3-methyl substituents have a remarkably constant multiplicative effect. Each additional group enhances the rate independent of the number and location of its neighbors; the factor for a trans-2 or 3-methyl (11.0) is slightly larger than the cis factor (8.2) (eq l).
$k_{\text {subst }} / k_{\text {parent }}=8.2^{\mathrm{N}_{c i s-2} \text { or } 3-\mathrm{CH}_{3}} \times 11.0^{\mathrm{N}_{t r a n s}-2 \text { or } 3-\mathrm{CH}_{3}}$
I-IX differ in their prediction of the extent of charge delocalization. Our methyl results are clearly most consistent with symmetrical structures VI-IX for the

cyclopropylcarbinyl cation transition state and are not consistent with the bicyclobutonium formulations IV and V . An additional curious structural effect is easily
explicable on this basis: the unexpected decrease in rate in the series $15 \rightarrow 18$, with an increase in ring strain. Structures VI-IX predict a shortening of the $\mathrm{C}-2,3$ bond in the ion. A small, strained ring attached to these positions would experience an increase of strain during ionization. Perhaps the small deviations of the relative rates of $\mathbf{1 0}$ (twofold) and of 11 (fivefold) from their calculated values (Table I) can be attributed to the same effect. Compounds 23 and 24 are accelerated by an increase of strain of the second ring due to the opportunity for $\mathrm{C}-1,2$ bond lengthening in the transition state.

Acknowledgments. We wish to thank the National Science Foundation and the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research.
(20) A. P. Sloan Research Fellow, 1962-1966.
(21) American Machine and Foundry Fellow, 1963-1964.

Paul von R. Schleyer, ${ }^{20}$ George W. Van Dine ${ }^{21}$ Department of Chemistry, Princeton University

Princeton, New Jersey 08540
Received January 13, 1966

The Electronic Multiplicity of Thermally Generated Cyanonitrene. A Thermochemical "Heavy-Atom" Effect

Sir:
We have recently reported ${ }^{1}$ that cyanonitrene (NCN) generated from thermal decomposition of cyanogen azide, ${ }^{2}$ in the absence of a solvent, inserts ${ }^{3}$ into the $\mathrm{C}-\mathrm{H}$
(1) A. G. Anastassiou, H. E. Simmons, and F. D. Marsh, J. Am. Chem. Soc., 87, 2296 (1965).

[^0]: (18) (a) L. S. Bartell, B. L. Carroll, and J. P. Guillory, ibid., No. 13, 705 (1964); L. S. Bartell and J. P. Guillory, J. Chem. Phys., 43, 647, 654 (1965). However, cf. G. J. Karabatsos and N. Hsi, J. Am. Chem. Soc., 87, 2864 (1965); (b) L. S. Bartell, J. P. Guillory, and A. P. Parks, J. Phys. Chem., 69, 3043 (1965).
 (19) G. L. Closs and H. B. Klinger, J. Am. Chem. Soc., 87, 3265 (1965).

